
ECE 763 HW3 Arpad Voros

1. Consider a convolutional neural network with input images sized 3× 224× 224

(a) Define the loss function Loss(y, p) for a random sample (x, y) where y is the ground-
truth one-hot label vector

For this problem, we will simply be using cross-entropy for our definition of the loss
function Loss(y, p), which also happens to be the negative log-likelihood function.
For this problem, we will be looking at an individual input x with one respective
label y

Loss(y, p) = −
C∑
i=1

yi log pi (1)

As one can see, the one-hot labels y are multiplied element-wise by the natural log
of the final layer. Since only the positive results remain from y, the error term is
negated to indicate a smaller error for a larger value of p. Alternatively, this can be
thought of as an intuitively equivalent term to

∏C
i=1 p

yi

i , which is just the likelihood
of the function

(b) Derive the gradient ∂Loss(y,p)
∂zc

where c ∈ [1, C]

The gradient of the loss function w.r.t. each individual node of layer z, indicated by
zc, is calculated by first knowing that

p = Softmax(z) =
ez∑C

k=1 e
zk

(2)

It should be noted that the summation term in the denominator term from hereon
out will be denoted by the scalar Z, as it is easier for calculation down the line. This
can be substituted for in the loss function to get

Loss(y, p) = −
C∑
i=1

yi log

(
ezi

Z

)
(3)

which becomes

∂Loss(y, p)

∂zc
= −

C∑
i=1

yi
∂ log

(
ezi

Z

)
∂zc

(4)

when calculating the gradient. In order to calculate the derivative of this summation,
we have to consider when i = c and when i 6= c and add them together

∂Loss(y, p)

∂zc i=c

= −Zyi
ezi

(
∂

∂zi

ezi

Z

)
= −Zyi

ezi

(
ezi

Z
· Z − ezi

Z

)
(5)

1



ECE 763 HW3 Arpad Voros

where
ezi

Z
· Z − ezi

Z
=

ezi

Z
·
(
Z

Z
− ezi

Z

)
= pi (1− pi) (6)

so that
∂Loss(y, p)

∂zc i=c

= −yi
pi
pi (1− pi) (7)

additionally for i 6= c

∂Loss(y, p)

∂zc i 6=c

= −
∑
i6=c

Zyc
ezc

(
∂

∂zc

ezi

Z

)
= −

∑
i 6=c

Zyc
ezc

(
−ezi

Z
· e

zc

Z

)
(8)

where

−ezi

Z
· e

zc

Z
= −pipc (9)

so that
∂Loss(y, p)

∂zc i6=c

= −
∑
i 6=c

yc
pc

(−pipc) (10)

The difference between these gradient terms comes from the simple quotient rule. In
the first, since i = c, then the derivative is always w.r.t. the current node, meaning
that the first term of the quotient rule exists. Otherwise, when i 6= c, the first term
of the quotient rule will be some node at position i w.r.t. to index c, which has no
relation and thus is 0

so overall
∂Loss(y, p)

∂zc
=

∂Loss(y, p)

∂zc i=c

+
∂Loss(y, p)

∂zc i 6=c

(11)

∂Loss(y, p)

∂zc
= −yi

pi
pi (1− pi)−

∑
i6=c

yc
pc

(−pipc) (12)

∂Loss(y, p)

∂zc
= −yi + yipi +

∑
i 6=c

ycpi (13)

which ends up being
∂Loss(y, p)

∂zc
= pi − yi (14)

2. Understand and derive the gradient of convolution. First consider the toy example, let
X be a 3× 3 data and W a 2× 2 filter kernel

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,W =

[
w11 w12

w21 w22

]

(a) Show the convolution output Z = X ·W (i.e. forward propagation)

The kernel W is applied onto X and swept across all rows and columns. In this
example, we will assume there is no padding. The result will be an element-wise
multiplication and summation for all regions the kernel can be swept to. A general
mathematical form is shown in (c), but here is the toy example result with no padding

2



ECE 763 HW3 Arpad Voros

z11 = x11w11 + x12w12 + x21w21 + x22w22

z12 = x12w11 + x13w12 + x22w21 + x23w22

z21 = x21w11 + x22w12 + x31w21 + x32w22

z22 = x22w11 + x23w12 + x32w21 + x33w22 (15)

and

Z =

[
z11 z12
z21 z22

]
In order to use padding, it would be more effective to create an Xpad

Xpad =


0 0 0 0 0
0 x11 x12 x13 0
0 x21 x22 x23 0
0 x31 x32 x33 0
0 0 0 0 0


where the number of padded zeros is one less than the the largest dimension of kernel
W , and Z is redefined as Z = W ·Xpad

(b) Show the gradient ∂Z
∂W (i.e. back propagation)

We can put each index of Z into vector form by defining a vectorized W as well as
a vectorized subset of X. For example, z11:

z11 =


x11

x21

x12

x22


> 

w11

w21

w12

w22

 = vec(X[1,2;1,2])
>vec(W ) (16)

∂zkl
∂wij

=
∑
k,l

1i=k,j=l × x(i+k−1)(j+l−1) (17)

And this occurs for all k, l of Z.

(c) Now consider the general case: let Xm×n be an m× n matrix and let W be a k × k
kernel, define the convolution output Z = X ·W and derive the gradient ∂Z

∂W

A more general form of the output Z can be calculated using what we found above
in (15), where for all rows and columns of Z we calculate

zij =

a∑
s=−a

b∑
t=−b

wstx(i+s)(j+t) (18)

where

a = b =

⌊
k

2

⌋

3



ECE 763 HW3 Arpad Voros

as for the gradient ∂Z
∂W , we can use the same notation used in (17) ∀ dimensions in

Z. Again, that result would be

∂zkl
∂wij

=
∑
k,l

1i=k,j=l × x(i+k−1)(j+l−1) (19)

This notation is unlike I have seen in other references, but essentially what (19)
is saying is the final gradient ∂Z

∂W ∈ Rk×l and only the elements of X remain for
whichever node of W the gradient is w.r.t.

4


